192	Roll No.:	Total Printed Pages : 4
3E1	B. Tech. (Sem. III) (Main & B	Back) Examination, January - 2013
Time : 3	3 Hours]	[Total Marks : 80 [Min. Passing Marks : 2 4
shown	n wherever necessary. Any o assumed and	cting one question from each unit. ks. Schematic diagrams must be data you feel missing suitably be stated clearly. culated must be stated clearly.
	ollowing supporting material is ed in form No. 205)	permitted during examination. 2. Nil
	UNIT	$\Gamma = I$
(a)	State the mass-action law Explain why a contact diff across an open circuited r	w as an equation and in words. fference of potential must develop p-n junction.
(b)	Explain the process of cor	nductivity modulation.
a	OR	4
(a)		ain it with Einstein relation and

(b) Derive an expression for diffusion and drift currents.

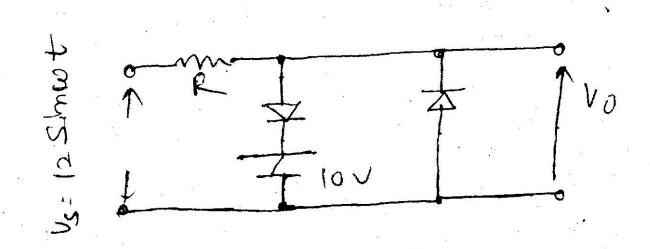
8

3E1492]

[Contd...

UNIT - II

- A diode whose internal resistance is 35Ω is to supply power (a) 2 to a $1k\Omega$ load from a 220V (rms) supply. Calculate :
 - Peak load current (i)
 - D.C. load current (ii)
 - A.C. load current (iii)
 - Diode voltage (iv)
 - Total input power to the circuit and (v)
 - Percentage regulation from no load to given load. (vi)


10

Draw the characteristics of UJT and explain its working. (b)

6

OR

Draw the output waveform for the circuit given. (a) 2

6

A full wave rectifier is to be designed to produce a peak output voltage 12 V and delivers a current of 120 mA to the (b) load. It is required to restrict the ripple of not more than 5%. An Input line voltage is 120 V (rms), 60 Hz is available. 10

UNIT - III

Write the Ebers and Moll equations. Sketch the circuit model, (a) 3 which satisfies these equations.

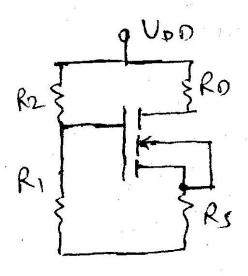
10

[Contd...

(b) Define stabilization techniques and compensation techniques.

OR

3 (a) Discuss thermal runway and define thermal resistance. What is the condition for thermal stability? - Explain.


8

(b) Explain base width modulation (the early effect) with the aid of plots of potential and minority concentration throughout the base region.

8

UNIT - IV

4 (a) The n-channel enhancement mode MOSFET of figure is characterized by $V_T=4V$ and $I_{Don}=10~mA$. Assume negligible gate current, $R_1=50~K\Omega,~R_2=0.4M\Omega,~R_s=0,~R_D=2~K\Omega$ and $V_{DD}=15~V$. Find (i) V_{GSQ} (ii) I_{OQ} and (iii) V_{DSQ} .

8

(b) Define the working of FET as voltage varible resistor.

Ö

OR

[Contd...

4 (a) Sketch the circuit of CS amplifier. Derive the expression for the voltage gain at low frequencies. What is the maximum value of $A_{\rm v}$?

10

(b) Draw the biasing circuit for a JFET or a depletion type MOSFET. Explain under what circumstances each of these two arrangements should be used.

6

UNIT - V

5 (a) Draw a Darlington emitter follower and explain, why the input impedance is higher than that of a single stage emitter follower.

10

(b) State Miller's theorem with the aid of a circuit diagram. Repeat for the dual of Miller's theorem.

6

OR

5 (a) Derive the expression for the CE short circuit current gain A_i as a function of frequency.

8

(b) Define f_{β} and f_{T} . What is the relationship between f_{β} and f_{T} ?

8